Beating is necessary for transdifferentiation of skeletal muscle-derived cells into cardiomyocytes.

نویسندگان

  • Yoshihiro Iijima
  • Toshio Nagai
  • Miho Mizukami
  • Katsuhisa Matsuura
  • Takehiko Ogura
  • Hiroshi Wada
  • Haruhiko Toko
  • Hiroshi Akazawa
  • Hiroyuki Takano
  • Haruaki Nakaya
  • Issei Komuro
چکیده

Cell transplantation could be a potential therapy for heart damage. Skeletal myoblasts have been expected to be a good cell source for autologous transplantation; however, the safety and efficacy of their transplantation are still controversial. Recent studies have revealed that skeletal muscle possesses the stem cell population that is distinct from myoblasts. To elucidate whether skeletal muscle stem cells can transdifferentiate into cardiomyocytes, we cocultured skeletal muscle cells isolated from transgenic mice expressing green fluorescent protein with cardiomyocytes of neonatal rats. Skeletal muscle-derived cells expressed cardiac-specific proteins such as cardiac troponin T and atrial natriuretic peptide as well as cardiac-enriched transcription factors such as Nkx2E (formerly called Csx/Nkx2.5) and GATA4 by coculture with cardiomyocytes. Skeletal muscle-derived cells also expressed cadherin and connexin 43 at the junctions with neighboring cardiomyocytes. Cardiomyocyte-like action potentials were recorded from beating skeletal muscle-derived cells. Treatment of nifedipine or culture in Ca2+-free media suppressed contraction of cardiomyocytes and inhibited skeletal muscle cells to express cardiac-specific proteins. Cyclic stretch completely restored this inhibitory effect. These results suggest that some part of skeletal muscle cells can transdifferentiate into cardiomyocytes and that direct cell-to-cell contact and contraction of neighboring cardiomyocytes are important for the transdifferentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting.

Skeletal muscle cell-derived grafts in the heart may benefit myocardial performance after infarction. Several studies have suggested that skeletal muscle stem cells (satellite cells) from adult muscle undergo transdifferentiation into cardiomyocytes after grafting into the heart, but expression of cardiac markers in graft cells has not been rigorously confirmed. To determine the fate of satelli...

متن کامل

Evaluation of Chronotropic Properties of Mouse Embryonic Stem Cells-Derived Cardiomyocytes After Fibroblast Growth Factor Treatment

Purpose: We investigated the effect of (bFGF) (basic-Fibroblast Growth Factor) on the differentiation of divided cardiomyocytes from mouse embryonic stem cells (ES) and their pharmacological properties. Materials and Methods: The mouse embryonic stem cells (Royan B1) were cultured as 800 cells per 20µl of a hanging drop. After two days, ES cells in each drop aggregated to form embryoid bodies ...

متن کامل

Differentiation of P19 Carcinoma Cell Line into Cardiomyocytes by Oxytocin Hormone

Purpose: The Present study was designed to investigate the OT effects on differentiation of P19 carcinoma cell line into cardiomyocytes. Materials and Methods: P19 carcinoma cell line were cultivated in hanging drops for 2 days to form aggregates termed embryoid bodies (EBs) and in suspension for 5 days. The EBs was treated with oxytocin hormone and DMSO. The EBs were then plated onto gelatin-...

متن کامل

Adult Murine Skeletal Muscle Contains Cells That Can Differentiate into Beating Cardiomyocytes In Vitro

It has long been held as scientific fact that soon after birth, cardiomyocytes cease dividing, thus explaining the limited restoration of cardiac function after a heart attack. Recent demonstrations of cardiac myocyte differentiation observed in vitro or after in vivo transplantation of adult stem cells from blood, fat, skeletal muscle, or heart have challenged this view. Analysis of these stud...

متن کامل

Comparison of BAX and Bcl-2 Expression During Human Embryonic Stem Cell Differentiation into Cardiomyocytes and Doxorubicin-induced Apoptosis

Back ground: Although the cell differentiation is an inseparable part of development in multicellular organisms, the regulating molecular pathway of it still is not fully defined. In the other hand, apoptosis is a fundamental physiological process which plays an essential role in a variety of biological events during development. Moreover, recent studies have found that apoptosis shows several ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 17 10  شماره 

صفحات  -

تاریخ انتشار 2003